
lunes, 22 de noviembre de 2010
domingo, 21 de noviembre de 2010

El acueducto es un sistema o conjunto de sistemas de irrigación que permite transportar agua en forma de flujo continuo desde un lugar en el que ésta accesible en la naturaleza, hasta un punto de consumo distante.
Cualquier asentamiento humano, por pequeño que sea, necesita disponer de un sistema de aprovisionamiento de agua que satisfaga sus necesidades vitales. La solución más elemental consiste en establecer el poblamiento en las proximidades de un río o manantial, desde donde se acarrea el agua a los puntos de consumo. Otra solución consiste en excavar pozos dentro o fuera de la zona habitada o construir aljibes. Pero cuando el poblamiento alcanza la categoría de auténtica ciudad, se hacen necesarios sistemas de conducción que obtengan el agua en los puntos más adecuados del entorno y la aproximen al lugar donde se ha establecido la población.
Incluso cuando la población estaba a orillas de un río, la construcción de conducciones era la mejor forma de garantizar el suministro, en vez de extraer el agua del río que, aunque estuviera muy cerca, generalmente tenía un nivel más bajo que el poblado. En otras ocasiones se hacía el acueducto porque el agua era de mejor calidad que la del río. Para cubrir esta necesidad se emprenden obras de gran envergadura que puedan asegurar un suministro de agua.
Aunque existían precedentes en las civilizaciones antiguas del Próximo Oriente y los ingenieros griegos habían construido conducciones eficientes, los ingenieros romanos, gracias fundamentalmente a su uso del hormigón, fueron los que pusieron a punto técnicas que se pudieron generalizar por todas las ciudades del Mediterráneo. Con todo, los factores técnicos no fueron los únicos que contribuyeron a difundir este tipo de obras, hizo falta también la unidad política del Imperio y la existencia de un sistema económico fuerte que creara las condiciones para el desarrollo urbanístico.
La mayor parte del recorrido se hacía por canales, en general cubiertos, que se construían por las laderas de los montes, siguiendo la línea de pendiente deseada (generalmente pequeña, del orden del 0,004%), y se situaban cada cierto tiempo cajas de agua o arcas de agua, pequeños depósitos que servían para regular el caudal o decantar los sólidos, normalmente arena, que las aguas pudieran arrastrar.
Cuando se debía salvar un camino, a un nivel un poco más bajo que el del acueducto, se usaban sifones, en los que el agua pasaba bajo el obstáculo y volvía a subir al nivel anterior. A menudo debían salvar desniveles más grandes y en ellos adoptaban la forma de puente, puesto que hacer conducciones en sifón capaces de resistir altas presiones era más caro. Como los puentes son la parte más visible de la obra, ha quedado la costumbre de llamar Acueducto al propio puente.
En muchas ocasiones, estos acueductos continuaron en uso durante la Edad Media e incluso en tiempos modernos, gracias a arreglos y restauraciones.
Las soluciones aplicadas a los acueductos romanos se siguieron usando sin modificaciones sustanciales hasta el siglo XIX. En el siglo XX, los progresos en la producción de cementos, el armado del hormigón con acero, los nuevos materiales y técnicas en la construcción de tubos y la posibilidad de construir potentes estaciones de bombeo revolucionaron las conducciones de agua y simplificaron su adaptación al terreno.
jueves, 18 de noviembre de 2010
El ángulo que forma el Meridiano Magnético respecto de la dirección del meridiano geográfico se llama declinación magnética (D) y puede estar posicionado a la izquiera (W) o a la derecha(E) del meridiano geográfico.
Por convención se estableció que las declinaciones magnéticas posicionadas al W (oeste) del meridiano geográfico que pasa por el lugar serán Negativas (D -) y las que estén a la derecha o E (este) serán Positivas (D +).
Estudios realizados durante muchos años permitieron establecer que la D (declinación magnética) mantiene un sentido de crecimiento o aumento de su valor en grados hasta llegar a un valor máximo que mantiene durante un período considerable para comenzar a decrecer (disminución de su valor en grados)
Cuando el valor en grados de la D (declinación magnética) decrece llega un momento que el mismo es 0ª momento en el que la dirección del meridiano geográfico coincide con la dirección del magnético, en esa instancia la D (declinación magnética) es 0; a partir de este momento cambia de de signo y comienza a crecer hasta llegar al valor máximo

GPS
GPS es un sistema satelital de posicionamiento. A-GPS fue desarrollado e introducido para mejorar el funcionamiento del sistema. El acrónimo A-GPS deriva de los términos ingleses Assisted Global Positioning System, es decir, GPS asistido, y se suele usar en teléfonos y dispositivos móviles tipo PDA. El desarrollo de A-GPS fue acelerado por requerimiento del servicio de emergencias E911 (similar al 112 europeo) de la FCC estadounidense, el cual requiere la posición de un teléfono móvil en caso de que realice una llamada de emergencia.
El GPS convencional presenta dificultades a la hora de proporcionar posiciones precisas en condiciones de baja señal. Por ejemplo, cuando el aparato está rodeado de edificios altos (como consecuencia de la recepción de múltiples señales rebotadas) o cuando la señal del satélite se ve atenuada por encontrarnos con obstáculos, dentro de edificios o debajo de árboles. De todos modos algunos de los nuevos aparatos GPS reciben mejor las señales de poca potencia y funcionan mejor en estas condiciones que aparatos más antiguos y menos sensibles.
Además, la primera vez que los receptores GPS se encienden en tales condiciones, algunos sistemas no asistidos no son capaces de descargar información de los satélites GPS como el "almanaque" y la "efemérides" (términos traducidos del inglés), haciéndolos incapaces de funcionar, triangular o posicionarse hasta que se reciba una señal clara durante al menos un minuto. Este proceso inicial, denominado primer posicionamiento o posicionamiento inicial (del inglés TTFF (Time To First Fix) o tiempo para el primer posicionamiento), suele ser muy largo en general, incluso según las condiciones, de minutos.
Un receptor A-GPS o GPS asistido puede solucionar estos problemas de diversas formas mediante el acceso a un Servidor de Asistencia en línea (modo "on-line") o fuera de línea (modo "off-line"). Los modos en línea acceden a los datos en tiempo real, por lo que tienen la necesidad de tener una conexión de datos activa con el consiguiente coste de la conexión. Por contra, los sistemas fuera de línea permiten utilizar datos descargados previamente.
Por tanto, algunos dispositivos A-GPS requieren una conexión activa (modo en línea) a una red celular de teléfono (como GSM) para funcionar, mientras que en otros simplemente se hace el posicionamiento más rápido y preciso, pero no se requiere conexión (modo fuera de línea). Los dispositivos que funcionan en modo fuera de línea ("off-line"), descargan un fichero mientras tienen acceso a la red (ya sea a través de una conexión de datos GPRS, Ethernet, WIFI, ActiveSync o similar) que se almacena en el dispositivo y puede ser utilizado por éste durante varios días hasta que la información se vuelve obsoleta y se nos avisa de que es preciso actualizar los datos o en lugares sin conexión de datos. 2 3
En cualquier caso, el sistema de GPS asistido utilizará los datos obtenidos, de una u otra forma, de un servidor externo y lo combinará con la información de la celda o antena de telefonía móvil para conocer la posición y saber qué satélites tiene encima. Todos estos datos de los satélites están almacenados en el servidor externo o en el fichero descargado, y según nuestra posición dada por la red de telefonía, el GPS dispondrá de los datos de unos satélites u otros y completará a los que esté recibiendo a través del receptor convencional de GPS, de manera que la puesta en marcha de la navegación es notablemente más rápida y precisa.
Por tanto:
Cuando trabajamos en modo en línea ("on-line"):
• El servidor de asistencia puede hacer saber al teléfono su posición aproximada conociendo la celda de telefonía móvil por la que se encuentra conectado a la red celular.
• El servidor de asistencia recibe la señal de satélite perfectamente, y posee grandes capacidades de cómputo, por lo que puede comparar señales recibidas procedentes del teléfono y determinar una posición precisa para informar al teléfono o a los servicios de emergencia de tal posición.
• Puede proveer datos orbitales de los satélites GPS al teléfono, haciéndolo capaz de conectarse a los satélites, cuando de otra manera no podría, y calcular su posición de manera autónoma.
• Puede tener mejor conocimiento de las condiciones ionosféricas y otros errores que podrían afectar la señal GPS que el teléfono, dotándolo de un cálculo más preciso de su posición. (Vea también Wide Area Augmentation System)
Como beneficio adicional, puede reducirse tanto la utilización de CPU como la cantidad de líneas de código que se necesiten calcular por parte del teléfono, ya que muchos procesos se realizan en el servidor de asistencia (no es una gran cantidad de procesamiento para un receptor GPS básico - muchos de los primeros receptores GPS corrían sobre Intel 80386 a 16 Mhz o hardware similar).
Cuando trabajamos en modo fuera de línea ("off-line"):
• El teléfono obtiene su posición aproximada conociendo la celda de telefonía móvil por la que se encuentra conectado a la red celular y se la entrega al sistema integrado en el dispositivo.
• El GPS asistido, que habrá obtenido previamente del servidor de asistencia los datos, determina qué satélites tenemos encima y obtiene la posición completando los datos parciales que recibe el receptor GPS convencional.
Algunos sistemas funcionan tanto en un modo como en otro (dependiendo de si tenemos activa una conexión de datos o no), resultando muy versátiles Desarrollo
Varias empresas de electrónica están desarrollando tecnologías de GPS que incrementan su rendimiento sobre las tecnologías ya existentes.
Tecnologías alternativas
El GPS de alta sensibilidad es una tecnología paralela, que soluciona algunos de los mismos problemas sin necesidad de una infraestructura adicional. No puede proporcionar soluciones instantáneas cuando el teléfono ha estado apagado por algún tiempo, cosa que de algún modo el A-GPS sí. CSR está desarrollando una tecnología llamada Enhanced GPS, la cual, presumiblemente, mejoraría ampliamente el rendimiento de las soluciones existentes.
Véase también
• Localización GSM
• Red de celdas
• Wide Area Augmentation System
• GPS Diferencial
• Sistema de guía inercial
Publicado por darkum en 14:54
miércoles, 17 de noviembre de 2010
Se denomina estación total a un aparato electro-óptico utilizado en topografía, cuyo funcionamiento se apoya en la tecnología electrónica. Consiste en la incorporación de un distanciómetro y un microprocesador a un teodolito electrón
FUNCION
Vista como un teodolito; una estación total se compone de las mismas partes y funciones. El estacionamiento y verticalización son idénticos, aunque para la estación total se cuenta con niveles electrónicos que facilitan la tarea. Los tres ejes y sus errores asociados también están presentes: el de verticalidad, que con la doble compensación ve reducida su influencia sobre las lecturas horizontales, y los de colimación e inclinación del eje secundario, con el mismo comportamiento que en un teodolito clásico, salvo que el primero puede ser corregido por software, mientras que en el segundo la corrección debe realizarse por métodos mecánicos.
El instrumento realiza la medición de ángulos a partir de marcas realizadas en discos transparentes. Las lecturas de distancia se realizan mediante una onda electromagnética portadora con distintas frecuencias que rebota en un prisma ubicado en el punto a medir y regresa, tomando el instrumento el desfase entre las ondas. Algunas estaciones totales presentan la capacidad de medir "a sólido", lo que significa que no es necesario un prisma reflectante.

El objetivo de la fotogrametría de largo alance es el conocimiento de las dimensiones y la posición de objetos en el espacio, a través de la medida o medidas realizadas a partir de la intersección de dos o más fotografías, o de una fotografía y el modelo digital del terreno correspondiente al lugar representado, el cual ha de ser realizado anteriormente por intersección de dos o más fotografías.
Esta técnica es básica para la elaboración de toda la cartografía, ya sea topográfica, temática, catastral, etc.
Puede ayudarse de información espectral y radiométrica de una imagen digital apoyada en la teledetección.
La fotogrametría puede ser terrestre o aérea dependiendo desde donde son obtenidas las imágenes.
Aplicaciones
Sus aplicaciones son numerosas:Agronomía, Cartografía, Ortofotografía, Arquitectura, Planeamiento y ordenación del territorio, Medio ambiente, Arqueología, Control de estructuras, Mediciones, Topografía, Biomecánica en diversos campos como la Medicina, Ergonomía o Deporte, Investigación policial (reconstrucción de accidentes), Zoología, ...
Tipos de fotogrametría
Existen varias formas de hacer fotogrametría:
Fotogrametría analógica: Son los modelos matemáticos utilizados. Evidentemente, fue la primera parte de la fotogrametría en desarrollarse.
Fotogrametría analítica: Se encarga de aplicar los modelos matemáticos a objetos físicos. Fue la segunda parte en desarrollarse.
Fotogrametría digital: Con la aparición de los ordenadores, se sustituye la imagen analógica por la imagen digital, del mismo modo que se empiezan a utilizar programas informáticos. En la actualidad la fotogrametria digital convive con la analítica.
Fotogrametria aérea: Es cuando las estaciones se encuentran en el aire. Se aplica para la elaboración de planos y/o mapas para el desarrollo de proyectos de ingeniería.
Fotogrametria terrestre: En este caso las estaciones se encuentran a nivel del suelo.
Esta técnica es básica para la elaboración de toda la cartografía, ya sea topográfica, temática, catastral, etc.
Puede ayudarse de información espectral y radiométrica de una imagen digital apoyada en la teledetección.
La fotogrametría puede ser terrestre o aérea dependiendo desde donde son obtenidas las imágenes.
Aplicaciones
Sus aplicaciones son numerosas:Agronomía, Cartografía, Ortofotografía, Arquitectura, Planeamiento y ordenación del territorio, Medio ambiente, Arqueología, Control de estructuras, Mediciones, Topografía, Biomecánica en diversos campos como la Medicina, Ergonomía o Deporte, Investigación policial (reconstrucción de accidentes), Zoología, ...
Tipos de fotogrametría
Existen varias formas de hacer fotogrametría:
Fotogrametría analógica: Son los modelos matemáticos utilizados. Evidentemente, fue la primera parte de la fotogrametría en desarrollarse.
Fotogrametría analítica: Se encarga de aplicar los modelos matemáticos a objetos físicos. Fue la segunda parte en desarrollarse.
Fotogrametría digital: Con la aparición de los ordenadores, se sustituye la imagen analógica por la imagen digital, del mismo modo que se empiezan a utilizar programas informáticos. En la actualidad la fotogrametria digital convive con la analítica.
Fotogrametria aérea: Es cuando las estaciones se encuentran en el aire. Se aplica para la elaboración de planos y/o mapas para el desarrollo de proyectos de ingeniería.
Fotogrametria terrestre: En este caso las estaciones se encuentran a nivel del suelo.
martes, 29 de junio de 2010
miércoles, 26 de mayo de 2010
lunes, 10 de mayo de 2010
instalaciones sanitarias

Instalaciones sanitarias
Las instalaciones sanitarias, tienen por objeto retirar de las construcciones en forma segura, aunque no necesariamente económica, las aguas negras y pluviales, además de establecer obturaciones o trampas hidráulicas, para evitar que los gases y malos olores producidos por la descomposición de las materias orgánicas acarreadas, salgan por donde se usan los muebles sanitarios o por las coladeras en general.
Las instalaciones, sanitarias, deben proyectarse y principalmente construirse, procurando sacar el máximo provecho de las cualidades de los materiales empleados, e instalarse en la forma más práctica posible, de modo que se eviten reparaciones constantes e injustificadas, previendo un mínimo mantenimiento, el cual consistirá en condiciones normales de funcionamiento, en dar la limpieza periódica requerida a través dé los registros.
domingo, 9 de mayo de 2010
tipos de nivelacion
NIVELACION GEOMETRICAEs el más preciso y utilizado de todos, se lleva a cabo mediante la utilización de un nivel óptico o electrónico, existen cuatro tipos de nivelación geométrica definidos según su precisión: 1° y 2° orden (utilizados en geodesia), 3° y 4° orden (utilizados en topografía), el procedimiento es igual en todos ellos, solo cambian los elementos utilizados para medir; y también podríamos diferenciar dos tipos más según el trabajo a realizar: nivelación geométrica lineal (si se nivela desde un punto hasta otro siguiendo una trayectoria que una ambos) o nivelación geométrica de superficie (cuando nivelamos un sector o una línea desde una misma estación referida a un mismo plano de referencia). El procedimiento para nivelaciones lineales sean estas topográficas o geodésicas es igual, solo cambia la precisión a alcanzar y los instrumentos a utilizar. Se realiza mediante lecturas efectuadas con el Hilo Medio del retículo del nivel, sobre una mira graduada que se coloca a una distancia no mayor de 60 o 70 m, estas lecturas se restan convenientemente entre sí obteniéndose de esta manera el desnivel existente entre los dos puntos donde estuvo apoyada la mira.Obtención del desnivel entre dos puntos.Este es el procedimiento en el caso de que solo queramos obtener el desnivel existente entre dos puntos, pero en el caso en que es necesario el replanteo o la obtención de una o más cotas, el cálculo se complica ya que debemos agregar dos nuevos elementos al cálculo: la cota y el plano Visual (PV) o cota del eje óptico del anteojo del nivel, paso intermedio que debemos calcular antes de calcular la cota de los demás puntos.Replanteo de la cota en un punto desconocido.Para el trabajo con cotas debemos tener al menos uno de los puntos, objetos del trabajo, con cota conocida o un PF en sus inmediaciones, a los efectos de tomarlo como plano de referencia, de no ser así se deberá hacer una nivelación, llamada de "enlace" a los efectos de darle cota a uno de los puntos dentro del trabajo, de no ser posible o económicamente conveniente siempre queda la opción de nivelar uno de los puntos mediante la colocación sobre él de un baroaltímetro (instrumento que a través de la medición de la presión barométrica nos da una altura sobre el nivel del mar bastante aproximada) o simplemente darle una cota arbitraria.Supongamos como en el caso anterior tener un PF como inicio del trabajo, esto facilita la tarea, se debe colocar la mira sobre este y se toma la lectura, en general solo se utiliza el hilo medio, aunque algunos prefieren tomar lecturas sobre los tres hilos y hacer luego la comprobación siguiente: (Hilo sup. + Hilo inf. ) / 2 = Hilo medioLo cual no es necesario, y en la práctica suele tornarse engorroso; una vez tomada la lectura se suma este valor a la cota del PF y hemos obtenido la cota del PV. Ya obtenida esta cota se colocará la mira sobre la estaca a la que se quiere dar cota y se tomará una nueva lectura, notemos ahora que a simple vista se hace obvio que esta lectura es la diferencia entre la cota del PV y la cota de la estaca, de manera que restamos la lectura obtenida a la cota del PV y el resultado es la de la estaca.Distintos tipos de nivelaciónMaterialización de una cota.Otro caso particular del uso de las cotas, es cuando necesitamos replantear una cota que aparece en un plano de proyecto de obra y no está materializada en el terreno. Supongamos volver al caso anterior, pero esta vez la cota a que deberá quedar la estaca es conocida previamente porque aparece en el proyecto que estamos replanteando. En este caso clavamos la estaca apenas en el terreno y dejamos la masa a mano, esta vez ya conocemos la cota del PV que ya había sido calculada y la cota a la que deberá quedar la estaca, nos falta la diferencia entre ambas, que hallaremos restando ambos valores, así que hacemos la resta y el resultado será la lectura que deberemos ver en el retículo, retomamos entonces la masa y alternativamente golpearemos la estaca y haremos lecturas hasta que obtengamos el valor calculado (En el caso del ejemplo 0,281).
DISTINTOS TIPOS DE NIVELACION GEOMETRICANIVELACION GEOMETRICA COMPUESTA O LINEALNivelación geométrica compuesta.Es el más usado ya que generalmente los puntos a nivelar se encuentran a más de la distancia máxima en que se puede colocar la mira, y por lo tanto se deben realizar tantas nivelaciones simples como sean necesarias para unirlos, para realizar una nivelación se debe tener en cuenta una distancia para cada tramo de entre 120 a 180 m y luego dividir la longitud total por esta distancia para hallar la cantidad de tramos a realizar; los puntos intermedios entre los dos (o más) puntos objetos del trabajo, se llamarán puntos de paso o PP
.NIVELACION SIMPLELa nivelacion es simple cuando el desnivel a medir se determina con única observación .Para la nivelacion simple el nivel se sitúa en el punto medio de los dos puntos que deseamos conocer el desnivel. Proccedemos a estacionar el nivel y realizar las lecturas sobre la mira y por diferencia de lecturas obtenemos el desnivel.NIVELACION COMPUESTASon aquellas nivelaciones que llevan consigo un encadeenamiento de observaciones. La nivelacion compuesta consiste en estacionar en varios puntos intermedios, arrastrando la nivelacion. La nivelacion compuesta se utiliza cuando la distancia de dos puntos a nivelar es grande, cuando los puntos extremos no son visibles entre sí, o la diferencia de nivel es superior a la que se puede leer de una sola estación.
CALCULO DE UNA NIVELACIONCálculo de una nivelación.Para el cálculo de una nivelación tenemos dos procedimientos igualmente válidos, que serán utilizados alternativamente según el criterio del operador, el más sencillo es el de las sumatorias para este caso debemos agrupar todas la lecturas "hacia atrás" (es decir hacia el punto de partida) por un lado y todas las lecturas hacia "adelante" (es decir hacia el punto de llegada) por otro; luego efectuamos el cálculo que se ve a la derechaEl otro caso es el cálculo del plano visual más sencillo y rápido, no es más que ir realizando sucesivas nivelaciones simples, las cuales con una calculadora se realizan en el momento y se pueden comprobar y controlar en el lugar sin perdida de tiempo.512,731 + 1,357 - 0,252 + 1,109 - 0,342 + 1,033 - ,0,322 = 515,314 msnm (para el ejemplo anterior)NIVELACION GEOMETRICA DE SUPERFICIESEs la nivelación que se ejecuta partiendo de uTFUSWYn PF , acotando varios puntos desde una misma estación.Para su ejecución se lee sobre la mira colocada sobre un PF, y se obtiene un PV que será común a todos los puntos relevados o replanteados, de ahí en adelante. Este procedimiento se utiliza en los casos en que se debe relevar una superficie para conocer su pendiente o para luego dibujar las curvas de nivel que representarán una superficie en un gráfico, o también al replantear la pendiente de por ejemplo un caño de cloacas o el cordón de una veredalsgl
NIVELACION TRIGONOMETRICANivelación Trigonométrica.Es la nivelación que se realiza a partir de la medición de ángulos cenitales, de altura o depresión, y de distancias que luego se usarán para la resolución de triángulos rectángulos, donde la incógnita será el cateto opuesto del ángulo a resolver, que en estos casos son el desnivel existente entre el punto estación y un, otro, punto cualquiera.El ejemplo más simple es cuando con un teodolito medimos un ángulo y con un E.D.M. adosado al mismo, la distancia inclinada existente entre la estación y un punto cualquiera.
podemos clasificar al equipo en tres categorías:
- aquí se encuentra la cinta métrica, el odómetro, y el distanciometropara medir pendiente.






DIBUJO DE PLANOS TOPOGRÁFICOS
PRECIOS DE....
PRECIOS PARA 2010 SEGUN.... PRECONCRETOS S.A.BASE GRANULAR 1 1/2".............. 22100 M3AG - 1" ............................................. 30800M3TRITURADO 3/4.......................... 35400 M3TRITURADO 3/8 .......................... 39901 M3ARENA FINA Y GRUESA............ 23200 M3CEMENTO ..................................... 16000 PACA DE 42,5 Kg
martes, 30 de marzo de 2010
alquiler de eqúipos topos
* *** * TEODOLITO * * * * DIA 180.000 * * SEMANA 1.260.000 * * MES 5.040.000* * * * ESTACION TOTAL* * * * DIA 120.000 * * SEMANA 840.000 * * MES 3.360.000* * * * NIVEL * * * * DIA 120.000 * * SEMANA 840.000 ...
LEVANTAMIENTO CON CINTA
*Un área del terreno puede ser levantada por completo por medio de cinta solamente. Según se trate una poligonal abierta o cerrada existen varios métodos para hacer el levantamiento. Esta práctica consist...
** *BRUJULA * *Antes de la invención del teodolito, la brújula representaba para los ingenieros, agrimensores y topógrafos el único medio práctico para medir direcciones y ángulos horizontales. * *A pesar ...
costrucciòn,,,,
PLANO DE CIMENTACIÓN *La base sobre la que descansa todo el edificio o construcción es lo que se le llama cimientos. Rara vez estos son naturales. Lo más común es que tengan que construirse bajo tierra. ...
Sin título
PLANO DE CIMENTACIÓN ** *La base sobre la que descansa todo el edificio o construcción es lo que se le llama cimientos. Rara vez estos son naturales. Lo más común es que tengan que construirse bajo tierr...
jueves, 18 de febrero de 2010
ejes
Todos los puntos experimentales y datos de interés queden dentro de la gráfica.
Los puntos experimentales y las rectas de mejor ajuste debe distribuirse a lo largo del gráfico de forma más o menos homogénea. Es decir, no deben quedar grandes zonas en blanco sin datos de interés.
Al elegir los máximo y mínimo de los ejes, debe procurarse que no coincida ningún punto experimental con el borde del eje, salvo que se corresponda con un valor muy notable como el cero.Una vez elegido los valores máximo y mínimo se colocan las subdivisiones de los ejes, junto con su etiquetas. En general pueden colocarse dos tipos de divisiones: unas principales, y que incluirán a los extremos de los ejes, y otras menores que subdividen un intervalo mayor.
Todos los puntos experimentales y datos de interés queden dentro de la gráfica.
Los puntos experimentales y las rectas de mejor ajuste debe distribuirse a lo largo del gráfico de forma más o menos homogénea. Es decir, no deben quedar grandes zonas en blanco sin datos de interés.
Al elegir los máximo y mínimo de los ejes, debe procurarse que no coincida ningún punto experimental con el borde del eje, salvo que se corresponda con un valor muy notable como el cero.Una vez elegido los valores máximo y mínimo se colocan las subdivisiones de los ejes, junto con su etiquetas. En general pueden colocarse dos tipos de divisiones: unas principales, y que incluirán a los extremos de los ejes, y otras menores que subdividen un intervalo mayor.

LEVANTAMIENTO CON BRUJULA
LEVANTAMIENTO CON BRUJULA:
INTRODUCCION: Antes de la invención del teodolito, la brújula representaba para los ingenieros, agrimensores y topógrafos el único medio práctico para medir direcciones y ángulos horizontales.
A pesar de los instrumentos sofisticados que existen actualmente, todavía se utiliza la brújula en levantamiento aproximado y continuo siendo un aparato valioso para los geólogos, y los técnicos forestales entre otros.
Como en el caso del levantamiento con cinta, un área de terreno puede ser levantada por medio de brújula y cinta.
Esta práctica consiste en el levantamiento de una poligonal abierta de la cual se requiere medir sus distancias horizontales y sus rumbos (direcciones) para la orientación de los ejes de la poligonal.
Este tipo de levantamiento no es de precisión y se utiliza en la elaboración de perfiles geológicos.
OBJETIVOS: 1. Familiarizar al estudiante con el uso de la brújula.
• Facilitar mediciones de rumbos y azimutes en orientación de líneas o ejes.
• Dar a conocer las aplicaciones en levantamientos geológicos
INSTRUCCIONES :
• Hacer un reconocimiento de la zona a levantar, materializando los vértices, de acuerdo al tipo de trabajo y a las características topográficas del terreno.
• La medición de las distancias entre los vértices se hace en línea recta y con la cinta horizontal, por lo tanto es importante seleccionar los vértices de tal manera que no presenten dificultades para su medición.
• Siempre que sea posible es preferible evitar que un alineamiento atraviese un obstáculo o accidente que presente considerable dificultad para la medición.
• Que haya visibilidad entre las estaciones.
• Una vez seleccionadas las estaciones se miden los ejes de la poligonal, teniendo en cuenta que las distancias requeridas son las horizontales, además que haya un correcto alineamiento.
• Se miden los rumbos y contra rumbos de los ejes de la poligonal 3
• El rumbo en valor angular debe ser igual al contra rumbo.
Ejemplo: Rumbo 12 = N 75° E
Contra - rumbo 21 = S 75° W
En la práctica esta igualdad no se da por algunos factores tales como:
La brújula esta desnivelada.
El magnetismo de la brújula es débil.
Cercanía a lugares donde hay material metálico.
Apreciación en la lectura angular.
CONDICIONES QUE DEBE REUNIR UNA BRUJULA
Condiciones que debe reunir una brújula:La línea de los Ceros Norte-Sur debe coincidir con el plano vertical de la visual definida por la Pínulas.Si esto no se cumple, las líneas cuyos rumbos se miden quedarán desorientadas, aunque a veces se desorienta a propósito para eliminar la declinación.La recta que une las 2 puntas de la aguja debe pasar por el eje de rotación, es decir, la aguja en sí debe ser una línea recta.Se revisa observando si la diferencia de las lecturas entre las 2 puntas es de 180°, en cualquier posición de la aguja.Se corrige enderezando la aguja.El eje de rotación debe coincidir con el centro geométrico de la graduación.Se revisa observando si la diferencia de lecturas de las 2 puntas es de 180° en alguna posición y en otras no. El defecto consiste en que el pivote de giro de la aguja se haya desviado. Se corrige enderezando el pivote convenientemente, en el sentido normal a la posición de la aguja que acuse la máxima diferencia a 180°.Nota:Los ajustes que requiera la brújula conviene que se hagan de preferencia en taller, para evitar que la aguja se desmagnetice. La aguja debe quedar apretada cuando no se usa, para que no se golpee al transportarla y se doble el pivote.
USOS DE LA BRUJULA
USOS DE LA BRUJULA: Se emplea para levantamientos secundarios, reconocimientos preliminares, para tomar radiaciones en trabajos de configuraciones, para polígonos apoyados en otros levantamientos más precisos, etc..
No debe emplearse la brújula en zonas donde quede sujeta a atracciones locales (poblaciones, líneas de transmisión eléctrica, etc.).
Levantamientos de Polígonos con Brújula y Cinta.
El mejor procedimiento consiste en medir, en todos y cada uno de los vértices, rumbos directos e inversos de los lados que allí concurran, pues así, por diferencia de rumbos se calcula en cada punto el valor de ángulo interior, correctamente, aunque haya alguna atracción local. Con esto se logra obtener los ángulos interiores de polígono, verdaderos a pesar de que haya atracciones locales, en caso de existir, sólo producen desorientación de las líneas. El procedimiento usual es:
Se miden Rumbos hacia atrás y hacia delante en cada vértice. (Rumbos Observados).
A partir de éstos, se calculan los ángulos interiores, por diferencia de rumbos, en cada vértice.
Se escoge un rumbo base (que pueda ser el de un lado cuyos rumbos directos e inverso hayan coincidido mejor).
A partir del rumbo base, con los ángulos interiores calculados se calculan nuevos rumbos para todos los lados, que se seran los rumbos calculados